Применение современных цифровых технологий
Никакой другой прибор, за исключением, пожалуй, мультиметра, не распространен так, как осциллограф. Применение современных цифровых технологий привело к серьезному изменению характеристик и возможностей этих приборов. Но и традиционные аналоговые осциллографы реального времени не исчезли с рынка - их парк по-прежнему растет. Во-первых, они прочно занимают нишу простых недорогих осциллографов. Во-вторых, они пока еще незаменимы при исследовании высокочастотных сигналов. К тому же с развитием элементной базы аналоговые осциллографы приобрели ряд важных дополнительных функций и возможностей, например чрезвычайно облегчающие работу курсоры с цифровым отсчетом величин (напряжения и времени) и очень удобное цифровое управление. С помощью входного мультиплексора для нескольких каналов можно достаточно просто организовать единую развертку на однолучевой трубке с отображением нескольких сигналов.
Наряду с аналоговыми осциллографами широко используются и цифровые. Если бы не ограничения вследствие конечного времени оцифровки сигнала и сравнительно высокая стоимость, они могли бы почти полностью вытеснить своих аналоговых собратьев. Полная оцифровка сигнала позволяет избежать отображения сигнала в реальном масштабе времени и, следовательно, повысить устойчивость изображения, организовать сохранение результатов и запись редких или медленных процессов (аналог запоминающего осциллографа), упростить масштабирование и растяжку, ввести метки.
Использование дисплея вместо осциллографической трубки открывает возможность для отображения любой дополнительной информации и управления прибором с помощью меню. Однако при выборе осциллографа следует обратить внимание на обеспечение разумного баланса между функциональными клавишами и экранными меню - к основным функциям лучше иметь непосредственный доступ (одна функция - одна клавиша).
Более дорогие приборы имеют цветной дисплей, благодаря чему они позволяют легко различать сигналы различных каналов, метки времени и амплитуды, курсоры. Последние модели могут накапливать отображаемый в течение большого числа разверток сигнал, а также выделять цветом места с наибольшей повторяемостью сигнала. В принципе, похожий эффект можно получить на любой осциллографической трубке с высоким послесвечением. Но использование цифровой обработки и цвета позволяет добиться потрясающего результата.
Еще одно немаловажное преимущество - отличные массогабаритные показатели (3–5 кг) и малое энергопотребление позволяют выпускать такие приборы в носимом исполнении.
Цифровые осциллографы имеют и недостатки. Основной из них - не очень качественное отображение деталей сигнала из-за недостаточной частоты оцифровки (частоты выборки). Это объясняется тем, что сегодняшний уровень элементной базы не позволяет выполнить оцифровку сигнала со скоростями, необходимыми для исследования высокочастотных сигналов и быстрых переходных процессов. Согласно известной всем инженерам теореме Котельникова, для достоверного восстановления сигнала частота оцифровки должна быть как минимум вдвое выше максимальной из возможных в рабочей полосе частот осциллографа. На практике же используемое превышение является пятикратным. Полоса частот осциллографа связана с частотой выборки, и чем выше коэффициент широкополосности осциллографа, тем выше должна быть эта частота. Причем значение имеет не просто частота выборки, а частота выборки в пересчете на один канал.
Сложнее всего добиться оцифровки сигнала в реальном масштабе времени за один ход развертки. Сегодня типичные значения полосы частот для реализующих такой способ осциллографов составляют 100, 500 МГц, 1 ГГц при частоте оцифровки 0,5, 2,5, 5 ГГц. Для повышения скорости оцифровки используют специальные приемы. Один из них заключается в распараллеливании процесса оцифровки с помощью нескольких АЦП. Обычно это делается за счет использования АЦП других каналов, и, таким образом, при исследовании высокочастотных сигналов осциллограф превращается из многоканального в одноканальный. Другой метод состоит в повышении скорости за счет снижения разрешающей способности. Третий годится только для исследования периодически повторяющихся процессов, так как полная оцифровка сигнала выполняется не за один ход развертки, а за несколько.